

## Cassini Reaction Wheel Bearing Drag Performance 1997–2013†

Allan Y. Lee, Eric Wang\*, Cliff Lee, Glenn Macala, and Todd Brown\*\*

Guidance and Control Section

Jet Propulsion Laboratory

California Institute of Technology

September 16, 2013

†Lee, A.Y. and Wang, E.K., "Inflight Performance of Cassini Reaction Wheel Bearing Drag in 1997–2013," AIAA-2013-4631, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Boston, Massachusetts, August 19–22, 2013.

\*Eric Wang, MTS, Guidance and Control Flight Software Validation Section. Division of Autonomous Systems. Lead engineer, Cassini AACS Flight Software.

\*\*With supports from Mimi Aung, Tom Burk, Chester Chu, Earl Maize, Peter Meakin, Joe Savino, and Julie Webster.

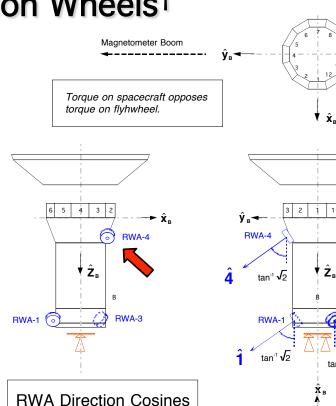
Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.



## Scope

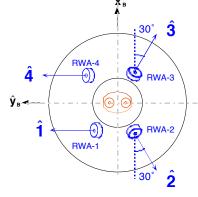
- The focus of this talk is on the management of spacecraft attitude control reaction wheels during the mission operations phase
- It will not cover various RWA design topics such as the sizings of wheel torque and momentum, configuration design, others
  - These topics are covered in, e.g., the JPL G&C System Engineering Class




#### Cassini Reaction Wheels†

- Reaction Wheel Assembly (RWA):
  - Three prime RWAs and an articulable RWA
  - They are used to achieve small attitude control error and good pointing stability
    - High resolution imaging and science data collection
    - Good Allan variance during three 40-day search for gravitational wave
    - S/C slew, mosaic, etc.



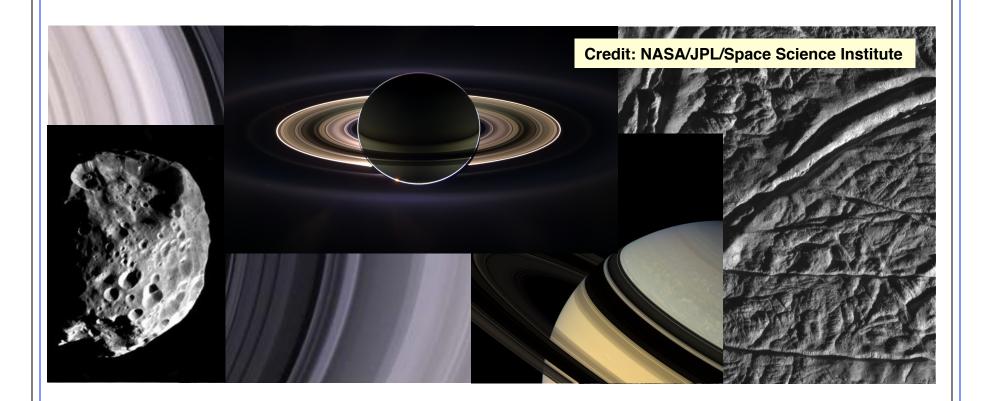



Cassini's RWA



| [Î]  <br>                                        | 0                     | √ <u>2</u><br>√3              | $\frac{1}{\sqrt{3}}$ | [ <b>X</b> <sub>B</sub> ] |
|--------------------------------------------------|-----------------------|-------------------------------|----------------------|---------------------------|
|                                                  | $-\frac{1}{\sqrt{2}}$ | - <del>1</del> <del>5</del> 6 | $\frac{1}{\sqrt{3}}$ | $\hat{\mathbf{y}}_{B}$    |
| $\begin{bmatrix} \hat{\mathbf{a}} \end{bmatrix}$ | $\frac{1}{\sqrt{2}}$  | $-\frac{1}{\sqrt{6}}$         | $\frac{1}{\sqrt{3}}$ | <br>  Îa                  |

RWA4 is Redundant, Articulable  $\hat{\mathbf{4}}$  can be aligned with  $\hat{\mathbf{1}}$  or  $\hat{\mathbf{2}}$  or  $\hat{\mathbf{3}}$  At Launch,  $\hat{\mathbf{4}}$  &  $\hat{\mathbf{1}}$  are aligned

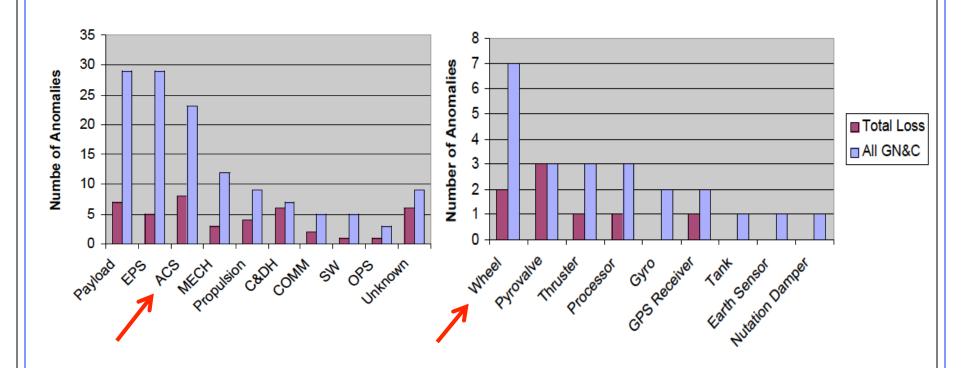



†Macala, G. A., "Design of the Reaction Wheel Attitude Control System for the Cassini Spacecraft," AAS Paper 02-121, 27–30 January 2002.



### **Good Pointing Stability Performance<sup>†</sup>**

 Good pointing stability performance are confirmed by thousands of high-quality images returned by various science instruments




†Emily Pilinski and Lee, A.Y., "Pointing Stability Performance of the Cassini Spacecraft," Journal of Spacecraft and Rockets, Volume 46, No. 5, September-October, 2009, pp. 1007–1015.



#### Satellite GN&C Anomaly Trend†

- Anomalies recorded for satellites launched in1990–2001. It can be seen that Payload, EPS and ACS have a large contribution to reported anomalies
- GN&C anomalies vs. equipment type:
  - Pay attention to reaction wheels



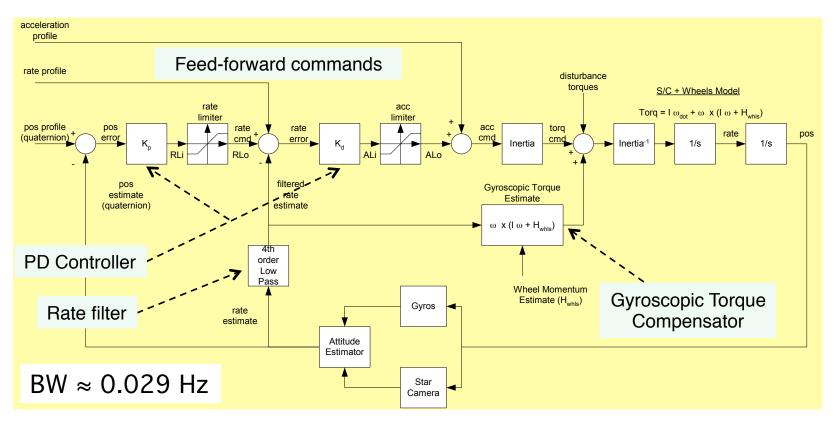
†Robertson, B. and Stoneking, E., "Satellite GN&C Anomaly Trend," Paper AAS 03-071, 26th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, 5-9 February 2003.



### **Spacecraft RWA Bearing-related Anomalies**

| Spacecraft (Launch Year)                                                | RWA Bearing Anomalies/Year                                                                                                        |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| IntelSat IV (1971)                                                      | High drag torque (1971)                                                                                                           |
| GPS-5 (1978), GPS-6 (1983), GPS-14 (1989), GPS-18 (1990), GPS-20 (1990) | Degraded bearing system (various)                                                                                                 |
| SAMPEX (1992)                                                           | Root cause of the wheel failure is hard to determine. However, wheel failure event was accompanied by elevated temperature (2007) |
| GOES-9 (1995)                                                           | Two wheels with Cage instability like symptoms. Total loss in 1998.                                                               |
| RadarSat-1 (1995)                                                       | Two wheels failed due to elevated drag (1999, 2002), Hybrid                                                                       |
| EchoStar V (1999)                                                       | Degraded bearing system (2001, 2004, 2007), Hybrid                                                                                |
| FUSE (1999)                                                             | Two permanent drag-related RWA failures (Nov. and Dec, 2001). Hybrid using 2 RWA and magnetic torque rods. Third failure in 2004  |
| XMM-Newton (1999)                                                       | Degraded bearing system with cage instability problem in 2008-2011                                                                |
| TIMED (2001)                                                            | Degraded bearing system (2007). For hybrid controller, see Ref. 1                                                                 |
| QuickSCAT (2001)                                                        | Low-rpm operations triggered RWA problem of 1 (of 4) RWA in 2001                                                                  |
| Mars Odyssey (2001)                                                     | Degraded bearing system (2012, and 2013)                                                                                          |
| Hayabusa (2003)                                                         | Two permanent drag-related RWA failures (July and October, 2005). Hybrid using the remaining wheel and thrusters. See Ref. 2      |
| Rosetta (2004)                                                          | Bearings of RWA-B and RWA-C have large drag spikes (2009-ongoing)                                                                 |
| Dawn (2007)                                                             | Two RWA anomalies in 2010 and 2012. For hybrid controller, see Ref. 3                                                             |
| Kepler (2009)                                                           | Degraded bearing system (2012, 2013). Hybrid is being considered                                                                  |

<sup>1.</sup> Dellinger, W.F., and Shapiro, H.S., "Attitude Control on Two Wheels and No Gyros – The Past, Present, and Future of the TIMED Spacecraft," AIAA/AAS Astrodynamics Specialist Conference, AIAA, Washington, DC, 2008.

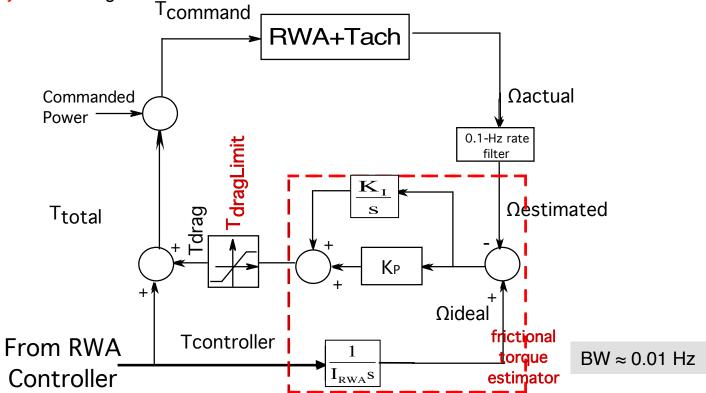

<sup>2.</sup> Kuninaka, H. and Kawaguchi, J., "Deep Space Flight of Hayabusa Asteroid Explorer," Proceedings of SPIE, Vol. 6960, Paper 696,002, 2008.

<sup>3.</sup> Bruno, D., "Contingency Mixed Actuator Controller Implementation for the Dawn Asteroid Rendezvous Spacecraft," Paper AIAA-2012-5289, AIAA Space 2012 Conference and Exposition, Pasadena, California, 11–13 September 2012.



#### Reaction Wheel Assembly Controller (RWAC) Design<sup>†</sup>

- The basic structure of the RWAC is a decoupled, three-axis,
   Proportional and Derivative (PD) controller
  - With rate and acceleration feed-forward commands
  - With compensation for gyroscopic torque




†Macala, G. A., "Design of the Reaction Wheel Attitude Control System for the Cassini Spacecraft," AAS Paper 02-121, 27-30 January 2002.



### Wheel Bearing Drag Estimation and Compensation<sup>†</sup>

- Flight software (FSW) has a PI estimator that estimates the RWA drag torque. The estimated torque is used:
  - To compensate the torque command from RWA controller
  - To feed a set of "Excessive Drag Torque" error monitors
  - To telemetry for trending



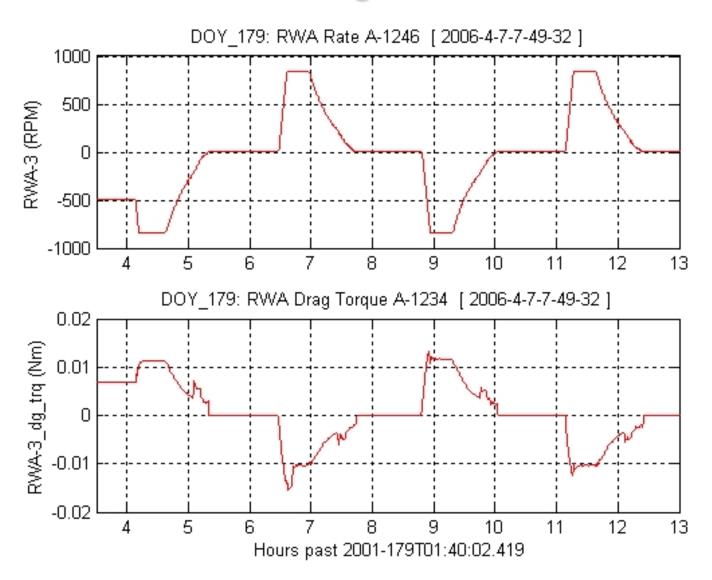
†Meakin, P.C., "Cassini Attitude Control Fault Protection: Launch to End of Prime Mission Performance," Paper AIAA-2008-6809, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Honolulu, Hawaii, 18–21 August 2008.



## Trending the RWA Bearing Drag Performance

RWA Drag Torque Model:

$$T_{drag} = -c \times \omega - T_{Dahl} \times sgn(\omega)$$


• From an initial rate of  $\Omega_0$ , RWA coast-down rate  $\omega(t)$  is:

$$\omega(t) = -\frac{T_{Dahl}}{c} sgn(\omega) + \{\Omega_0 + \frac{T_{Dahl}}{c} sgn(\omega)\}e^{-\frac{t}{\tau}}$$

- Data from ±900 rpm coast-down tests are used to estimate the viscous coefficient and Dahl friction of the prime/backup wheels
  - Clockwise (CW) and CCW values are determined separately
  - Parameters are trended
  - Values are used in simulation test beds
  - Values are also used in other ground software (RBOT, see the following pages)



#### Representative RWA Bearing Coast-down Test Profile

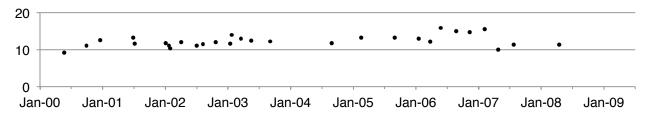




#### **Cassini Inflight RWA Bearing Drag Torque Tests**

- From 1999-DOY-025 to 2009-DOY-291 (3,916 days), there were 44 coastdown tests performed for the prime RWA. Once every 89 days
- The hydrazine cost of a coast-down test depends on both the initial RWA spin rate of the test and the possible occurrences of drag spikes during the test
  - The average per-test hydrazine cost of the ±900 rpm tests was about 21 g
  - That for the ±600 rpm was about 13 g
  - These tests weren't cheap!

**Table 1. Cassini RWA Drag Torque Characterization Tests** 


| Year                 | Days of Year for<br>RWA-124 Tests | Days of Year for<br>RWA-3 Tests | Comments                                                                                                                              |  |
|----------------------|-----------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| 1999<br>2000<br>2001 | , , ,                             |                                 | RWA-1234 coast-down initial tests with rates used: $\pm 836$ and $\pm 418$ rpm                                                        |  |
| 2002                 | 005, 024, 032, 094, 187, 221, 295 |                                 | RWA-1234 coast-down tests with initial rates: ±900 rpm.                                                                               |  |
| 2003                 | 014, 026, 079, 140, 250, 354      |                                 | First test was performed with [-739, -537, -547] rpm only for RWA-123. All others were performed with initial rates of $\pm 900$ rpm. |  |
| 2004                 | 137, 139, 243                     | 138, 256                        |                                                                                                                                       |  |
| 2005                 | 052, 244                          | 052, 244                        | RWA-124 coast-down tests with initial rates of                                                                                        |  |
| 2006                 | 021, 089, 149, 238, 319           | 026, 153, 307                   | ±900 rpm.  RWA-3 coast-down tests were performed separately with initial rates of ±600 rpm                                            |  |
| 2007                 | 042, 121, 210, 299                | 106, 301                        |                                                                                                                                       |  |
| 2008                 | 029, 110, 170, 288                | 097, 267                        |                                                                                                                                       |  |
| 2009                 | 017, 115, 291 (last test)         | 051                             |                                                                                                                                       |  |



Viscous Coefficient (10<sup>-5</sup> Nms/rad)

#### Trends of Cassini RWA-1234 Bearing Viscous Coeff.





#### 20 10 0 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09

| RWA | Pre-launch Mean<br>Viscous Coeff <sup>†</sup><br>(10 <sup>-5</sup> Nms/rad) |  |
|-----|-----------------------------------------------------------------------------|--|
| 1   | 11.4                                                                        |  |
| 2   | 9.9                                                                         |  |
| 3   | 9.9                                                                         |  |
| 4   | 9.9                                                                         |  |

#### 20 10 0 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09

RWA-4

RWA-3

†At 25±1 °C

## 20

an-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09



#### **Monitoring of Drag Torque Using Flight Telemetry**

- No RWA spin-down tests since 2009
- Drag torque trending now uses only telemetry from science ops
- RWA Trending Strategy:
  - During 3 months each RWA spends enough time spinning at different rates to give a snapshot of typical drag torque levels
  - S/C slews frequently between attitudes, thus RWA spin-rates always changing
  - Every 3 months divide RWA telemetry into bins of time spent at various spin-rates (e.g. 250 rpm -350 rpm is one bin)
  - Over 3 months each RWA spends
     ~20-200 hours in each data bin
     between 300 rpm and 1500 rpm

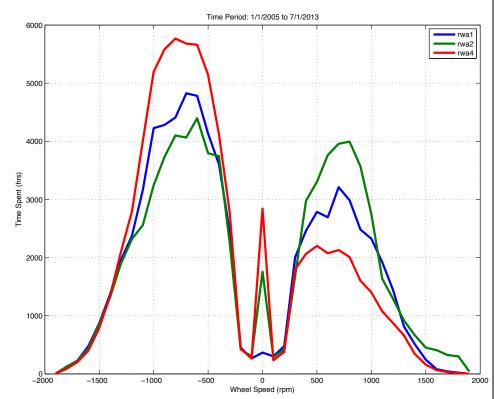
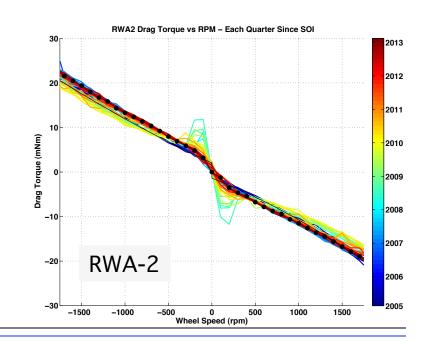
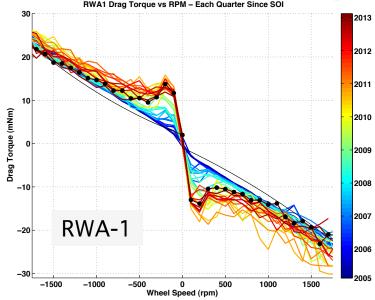
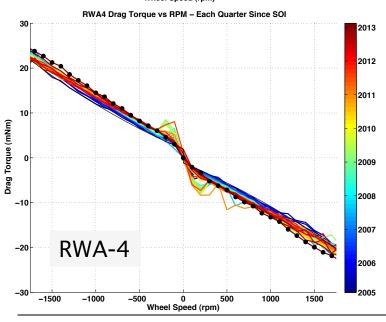



Figure: Total time each RWA spent at various spin rates between 2005 and 2013




**Monitoring of Drag Torque Using Flight Telemetry** 

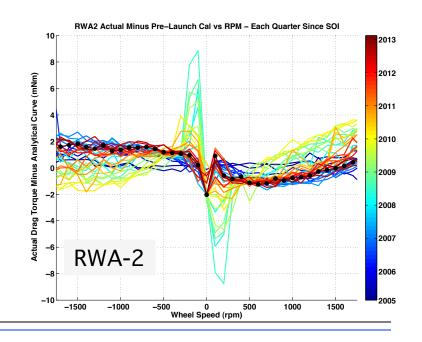

RWA Drag Torque Trending:

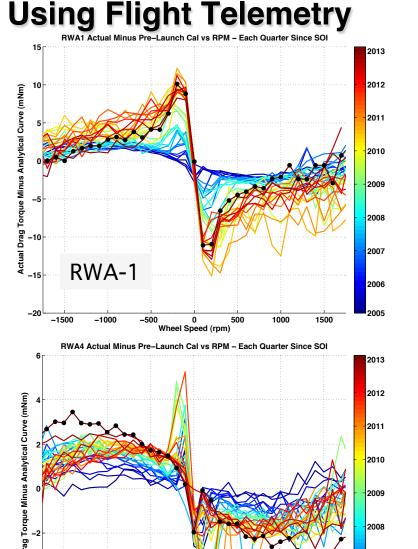

 Bin drag torque telemetry based on time spent in 100 rpm wide spin-rate bins

- Find median RWA drag torque for each bin
- Plot median drag torque levels from this quarter with historical results to see trends

Similar approach is used by ESA SOHO mission control team







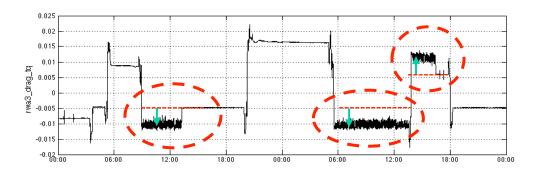

**Monitoring of Drag Torque Using Flight Telemetry** 

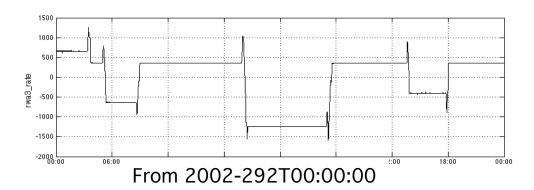
- RWA Drag Torque Trending:
  - To aid visibility on plots the data is normalized
  - Normalized by subtracting a predicted drag torque curve based on pre-launch measurements





Wheel Speed (rpm)


1500


RWA-4

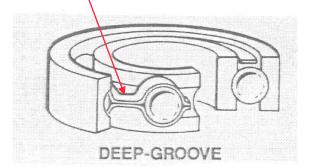


#### RWA-3 Anomalous Bearing Drag Observed in October 2002

- Drag torque "steps" were observed on RWA-3 (2002, DOY 291-95)
  - Large frictional drag torque steps were observed:
    - Frequently triggered by a RWA spin rate reversals
    - Step size ≈ 5-6 mNm (20% of the peak drag)
    - Step duration ≈ 4-10 hrs
  - "Roughness" of steps is an order of magnitude larger than its nominal value








## Bearing Cage Instability

- Based on the following observed symptoms:
  - Large "step" increase in drag torque
  - Spontaneous drag torque step up and step down
  - "Noisy" drag torque
- Our diagnosis of the RWA-3 problem is: Bearing cage instability
  - It is independently confirmed by our wheel bearing consultants



Cage (retainer, separator)
Two-piece ribbon 430
Corrosion-resistant steel



Both Inner and outer raceways, and balls are made of hardened 52100 alloy steel



# Cassini-Huch California Institute of Technology A Comparison of Bearing C.I. Symptoms

| Bearing CI Drag Characteristics                                   | NASA<br>Cassini-Huygens<br>RWA-3 |               | ESA<br>XMM-Newton<br>RWA-1 |
|-------------------------------------------------------------------|----------------------------------|---------------|----------------------------|
| Years of anomaly                                                  | 2002–3                           | 2011          | 2008–11                    |
| Drag Torque Step size [mNm]                                       | 5–8                              | 3–9           | 18–20                      |
| Drag Oscillation Frequency [mHz]                                  | 8–11                             | 3–9           | TBD                        |
| Roughness [mNm]                                                   | 2–3                              | 0.3–2.5       | 4–5                        |
| Individual duration [hour]                                        | 2–50                             | 1–96          | 1–4                        |
| Abundance (hour with cage instability per hour RWA is powered on) | 8.7%                             | 19.3%         | 10–25%                     |
| Range of CW spin rate with CI [rpm]                               | +300 to +1000                    | +300 to +1500 | +600 to +3000              |
| Range of CCW spin rate with CI [rpm]                              | -1000 to -600                    | -1000 to -700 | -3000 to -800              |







## Likely Failure Mode

Worrisome Cycle:

Cage instability

Degraded cage structural integrity:

 Large number of vibration cycles will weaken the metallic cage at places with stress concentration

Excessive friction between cage/balls/races

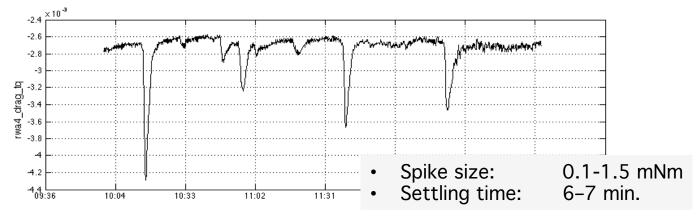
Energetic vibrations

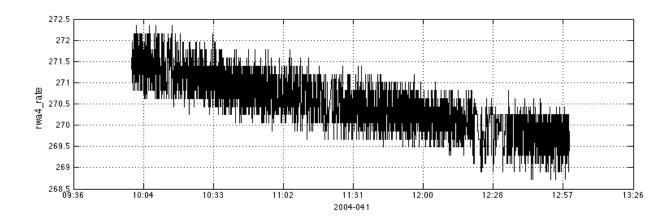


Degraded lubricant

Hot spots on cage

Polymerization of lubricant

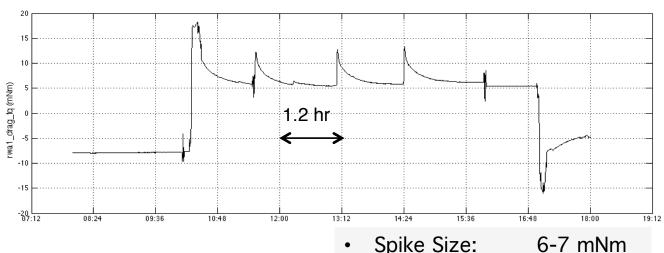




- RWA-3 drag was replaced by the backup RWA-4 in July 2003
  - After an 8-year rest, it was reused as a prime RWA (in 2011). But the cage instability symptoms returned and RWA-3 is made a backup RWA again



#### **Anomalous Drag Torque Spikes**

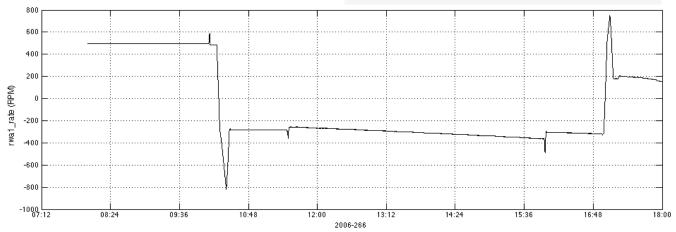
- "Spiky" drag torque occurred frequently on all wheels:
  - An example: RWA-4 at a near-constant spin rate of 271 rpm, 2000
  - The initial impulsive rise in drag torque is often time followed by either a rapid (several minutes) or gradual (several hours) exponential decay





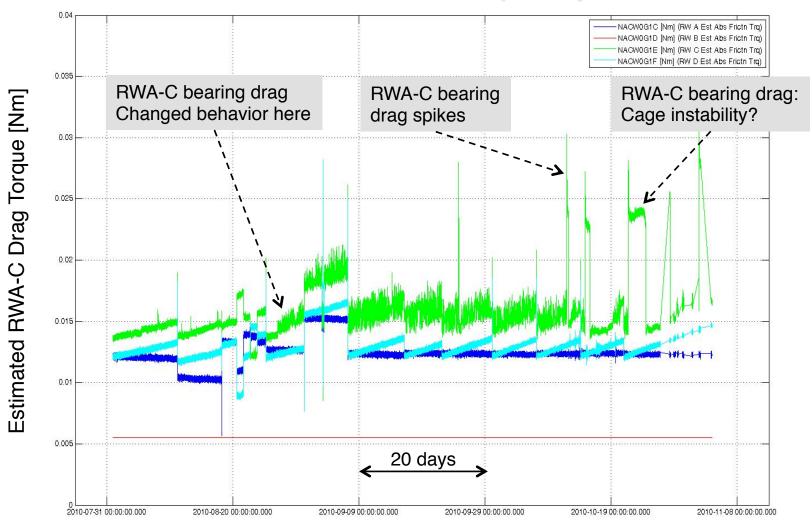



#### **RWA Bearing Drag Torque Spikes (Long Settling Time)**


An example: RWA-1 at a near constant spin rate of -250 rpm, 2004



Spike Size:


Settling time:

1.4-1.5 hr



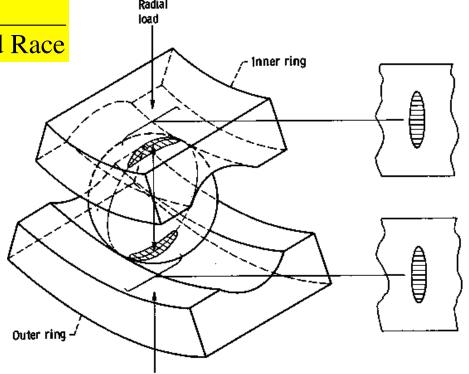


# Observed Bearing Drag Torque Spikes in ESA Rosetta RWA (2010)

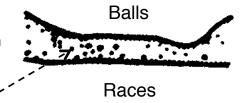




#### **Anomalous Drag Torque Spikes: Cause**


- Definitive cause is unknown. Our conjecture is it is an "oil jog" phenomenon
  - Small pockets of lubricant that collect outside of the normal ball/ cage and ball/race contact areas
  - They can become entrained in the contact areas by a variety of processes
  - Bearings that suddenly encounter an addition of oil will show an abrupt increase in drag that will then dissipate by various processes
- If this conjecture is right, the observed spikes are actually a positive indication of the presence of useful oil in bearings
- Selected FSW fault protection-related monitors' thresholds were raised to guard against accidental triggering of error monitor by these transient drag torque spikes<sup>†</sup>




## Stay Out Low-rpm Zone - Lambda Value

 $\lambda = \frac{\text{Lubricant Film Thickness}}{\text{Composite Roughness of Ball and Race}}$ 

- Boundary Lubrication ( $\lambda \le 1$ ):
  - Metal-metal contacts promotes wear
  - Excessive heating promotes lubricant polymerization
  - Shorten bearing life
- EHL<sup>†</sup> condition ( $\lambda$ >1):
  - Recommended for long life operations
  - Spin rates ≥300 rpm are needed to achieve λ≥1
- We use a tool RBOT to ascertain that RWA do not spend excessive time in the sub-EHL region



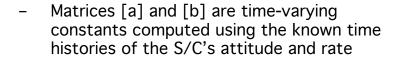
No metal-to-metal Contacts. Balls "float" on lubricant film



Lubricant in a highly compressed state

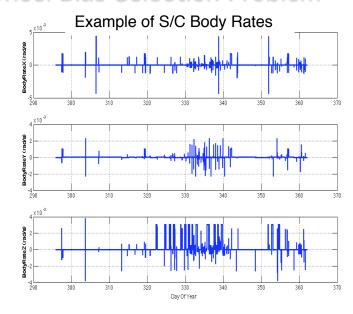
†EHL= Elasto Hydrodynamic Lubrication

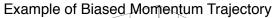


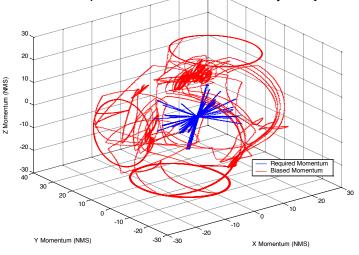

#### RBOT Solves A Nonlinear Deterministic Wheel Bias Selection Problem

- Required spacecraft momentum is known from mission design
  - Per-axis S/C rate time histories
  - Attitude quaternion time histories
- Conservation of angular momentum in inertial frame

$$\vec{h}_{o} + \vec{h}_{ext} = \vec{h}_{sc} + \vec{h}_{rwa}$$


$$\vec{\omega}_{rwa} = I_{rwa}^{-1} C_{i}^{rwa} C_{rwa}^{io} I_{rwa} \vec{\omega}_{bias} + I_{rwa}^{-1} C_{i}^{rwa} (-\vec{h}_{sc} + \vec{h}_{ext})$$

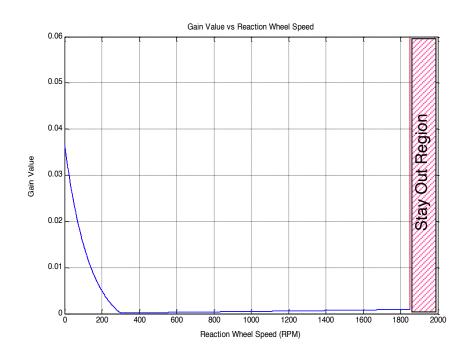

$$[a_{i-th}] \qquad [b_{i-th}]$$




 Computational efficient formulation of wheel speed equation as a function of input wheel bias

$$\vec{\omega}_{rwa} = [a]\vec{\omega}_{bias} + [b]$$










#### Cost Functional Penalizes Low RPM Speed Region

- Optimization parameter: cost index K<sub>i</sub> assigned to reflect operational constraints
  - Lower bound of the recommended EHL speed range (±300 rpm) selected as the threshold for lowrpm penalty region
  - Exponentially increase penalty for "nearness" to zero RPM inside the low-rpm region
  - Limit maximum wheel speed to 1850 rpm to provide margins for modeling uncertainties
  - Weigh the cost index K<sub>i</sub> for low RPM region at 3.6 times the high revolution region to account for relative consumption ratio



$$K_{i} = \frac{3.6 * X1}{\sum X1} + \frac{X2}{\sum X2}$$

$$X1 = \frac{(e^{-0.0075*\omega_{1}} - e^{-2.25})}{c^{2} * 12000}$$

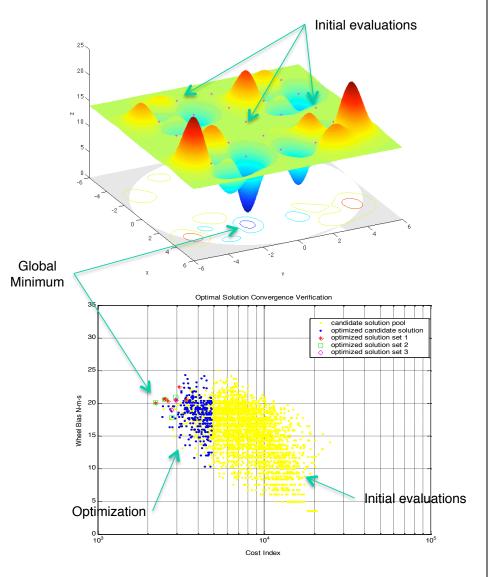
$$\omega_{2} = [0:1850]$$

$$X2 = \frac{\omega_2}{c * 4e + 9} \qquad c = 60$$



#### **RBOT Optimization: Search For Global Minimum**

Wheel speed profile model as a function of input wheel bias


$$\vec{\omega}_{rwa} = [a]\vec{\omega}_{bias} + [b]$$

 Optimization cost functional as a function of input wheel bias

$$J(\omega_{bias}) = \sum_{i=rwa_{1,2,4}} K_i(|\omega_i|)$$

Find  $\omega_{\scriptscriptstyle bias~opt}$  that minimizes  $J(\omega_{\scriptscriptstyle bias})$ 

- Search for global minimum
  - Shotgun approach for initial evaluations
  - Select candidates for optimization to provide profile diversity
  - Perform optimization using Nelder-Mead Simplex method
  - Multiple optimizations to convergence





#### **RBOT Key Operational Design Features**

#### 1. RBOT provide both optimal and sub-optimal solutions

- Often time, the optimal solutions may not be the best choice. High value science often coincide with periods of undesirable RWA rate profile
- Sub-optimal solutions provide users with alternatives in solving problematic time periods

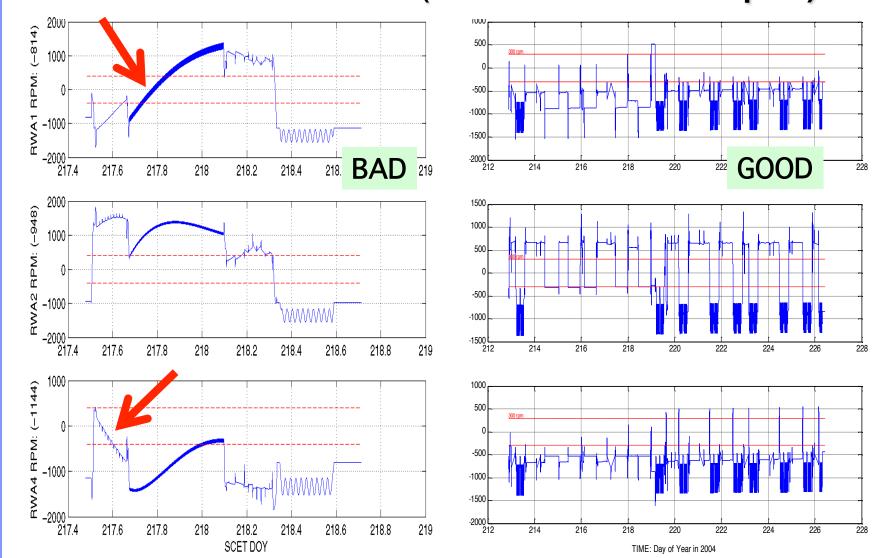
#### 2. Parallel processing capability

Improve computational efficiency by utilizing multiple workstations. Currently 9 CPUs are utilized

#### 3. Bias Placement Optimization (BPO)

Automated placement of RWA biasing events. Eliminate the manual trial and error approach

#### 4. Fuel Optimization (FO)


- Generate fuel optimal solutions with minimal penalty to RWA health

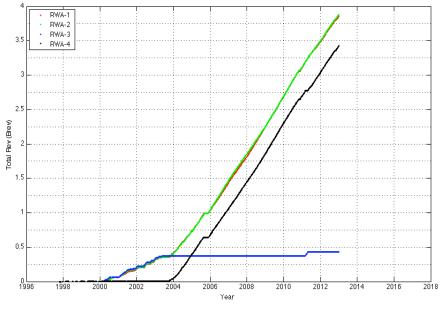
#### 5. Team work

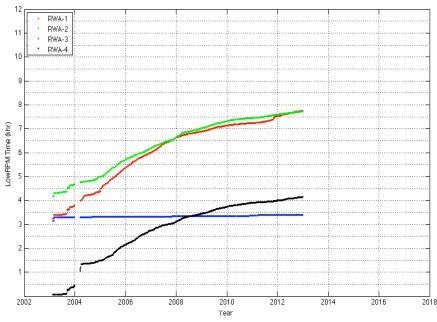
- Hold joint reviews with science planning and instrument teams to brainstorm RWA biasing problems and explore work-around solutions
- RWA bias design activity integrated into Sequence Development Process



#### **RWA-124 Rate Profile (Good and Bad Examples)**







## Status of Cassini RWA Consumables

- Pre-launch requirements of RWA consumables:
  - 4 Billions revolutions
  - 12 khr low-rpm (±300 rpm) time
- The consumption rates of the prime RWA revolutions in 2004–2013:
  - 1.14 million/day per wheel
- The per-wheel consumption rates of the prime RWA lowrpm time:

2005–2006: 2.5 hr/day

- 2010-2013: 21 min./day







#### RWA Operations Flight Lessons

- 1. Track RWA performance, beginning with wheel acceptance tests and throughout mission operations, to identify potential problems
- 2. Implement a RWA drag torque estimator in the flight software to provide ground visibility of any anomalous bearing drag conditions
- 3. Use a ground software tool (e.g., RBOT) to carefully manage RWA biasing events against prolonged low-rpm operations
- 4. Aggressively and constantly look out for opportunities in science observation sequence designs that can reduce low-rpm RWA operations
- 5. Ascertain that all the wheels' bearings are being maintained within the acceptable temperature ranges
- 6. If flight data indicates that the RWA lifespan may be constrained, use RWA to control S/C attitude only after the start of the prime mission
- 7. Review the FP design to identify its vulnerability when wheel drag torque is elevated. Should thresholds and/or persistence limits be changed?
- 8. Design, test, and exercise **contingency procedures** that will be needed to recover the S/C from a Safing state that is caused by a degraded/failed RWA



#### Conclusion

# Spacecraft attitude control reaction wheels must be managed with Tender Loving Care